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ABSTRACT

Investigations were performed with a view to making such devices in the surface, or in thin crystals, of vanadium dioxide. This required
developing suitable crystals, testing techniques to shape, pattern and dope them, improving understanding of the electrical and optical
properties of the phases and the metal-insulator transition (MIT) between them, and establishing control of the MIT. We found several
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correlated material. We determined that the response is purely photothermal, meaning that carrier relaxation to thermal equilibrium in the
insulating phase is much more efficient than in band semiconductors, consistent with strong correlations.
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Statement of the problem studied

Vanadium dioxide has a dramatic first-order metal-insulator transition above room temperature which
could in principle be exploited to make electrical and optical switches and sensors. Under this one-year
grant, investigations were performed with a view to making such devices in the surface, or in thin single
crystals, as opposed to granular films, of VO,. This required developing suitable crystals, testing
techniques to shape, pattern and dope them, improving understanding of the electrical and optical
properties of the phases and the metal-insulator transition (MIT) between them, and establishing better
control of the MIT.

Summary of the most important results

1. Nano-optical investigations

In collaboration with M.B. Raschke (University of Colorado), using mid-IR s-SNOM (scattering-scanning
near-field optical microscopy) above room temperature in air, we analyzed the domain behavior in
substrate-bound VO, nanobeams at down to 10 nm spatial resolution. The results were published in
Nano Letters'. Fig. 1 indicates the experimental setup and representative s-SNOM results, showing
sudden appearance and growth of metallic domains with high resolution. By combining the
measurements with micro-Raman spectroscopy we identified the presence of the M2 insulating phase in
competition with the M1 insulating phase in a range of temperatures below T,. We interpret this as a
result of the relationship between the lattice constants of the three phases, which is such that placing
M2 at a boundary between M1 and the rutile metal (R) reduces the elastic energy. This observation
combined with those of other recent studies implies that M2 is generically present in thin films and bulk
samples below T, though this fact has not been taken into account in most of the literature on VO,.
Ours may be the first investigation of a correlated electron material where the volume fraction and real
space domain pattern of three competing phases were revealed.
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Figure 1. (a) IR s-SNOM technique applied to a VO, nanobeam attached to a substrate. (b) Volume fraction
of M1, M2, and R phases for a nanobeam derived from the combination of s-SNOM imaging, as illustrated in
(c)-(e), and micro-Raman measurements as illustrated in (f).

2. Photoresponse

Using scanning photocurrent microscopy (SPCM), in collaboration with Xiaodong Xu (UW Physics
Department) we have investigated photocurrent and ultrafast response in suspended VO, nanobeams?
in ambient atmosphere, as depicted in Fig. 2. The results demonstrate the potential of SPCM applied to
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this system and others. They are currently under review in Nature Nanotechnology®. The scanning laser
reflection images 2a-c reveal the I-M interface, and show how the temperature rise due to laser heating
produces a shift of the interface. A laser power of 5 pW (~120 W/cm?) produces about 10 °C warming,
deduced from the interface shift. Figs. 2d-f are reflection images of a device at 30 °C, well below the
MIT, and at 75 and 95 °C, in I-M coexistence. Below are measurements of the photocurrent I,,, and
photoconductance G,, = (Ipn — Ip)/V, where V is the bias and I is the zero-bias photocurrent, at laser
power 1 uW. Below T, we find that I, is small and the finite G, is caused by the temperature
dependence of the insulator resistivity. Well above T¢, both I, and G, are larger and peaked at the I-M
interface. The sign, magnitude and variation of I is consistent with a thermoelectric origin, V), =
—AS;, 6Ty, where AS;yy = S; — Sy = —280 uV/°C is the difference in Seebeck coefficients between the
Im2 and M phases. 6T), is the rise in interface temperature which is maximum when the laser is directly
incident on it. By fitting the data we can also deduce that the ratio of the thermal conductivities
Km/Ki,,,= 2 and the fraction of the incident laser power absorbed, ~0.5. The peak in Gy, is at the same
place because Gy, is dominated by the change in resistance due to the decrease in the amount of Iy, on
laser warming which is also proportional to §T}. In summary, we determined the relationship between
the optical and dc electrical properties of VO,. The photoconductance and zero-bias photocurrent
generation are entirely of photothermal origin, consistent with very efficient electron-lattice relaxation
in the strongly correlated insulating phase and in stark contrast with the response of uncorrelated band
insulators.

95°C
100 [ a 3 H [
NE - 3
a : :
= ; ; :
0; :
_ 301 450 i
g 1
= © ;
3] 20 ‘
0.501
Iy
£ 0.25]
wﬂ.
0.00+ ; 1 i
0 4 8 12 0 6 12 18 0 6 12 18
Laser Position (um) Laser Position (um) Laser Position (um)

Figure 2. Top: Rendering of a laser spot (800 nm, continuous wave) superimposed on an SEM image of a
suspended VO, nanobeam. A bias voltage is applied to the left contact and the current I is measured from the
right. The photocurrent I, is the component of I at the laser chopping frequency, measured using a lockin
amplifier. Bottom: (a)-(c) Reflection images using a silicon photodiode, comparing the effects of a stage
temperature increase (middle) and laser power (bottom) on the I-M interface. (d)-(f), Corresponding
photocurrent images. (g)-(i), Photocurrent traces along the center-line of the nanobeam in each case, at a series
of biases (V =-50,-30,0,+30,+50 mV). (j)-(I), Derived photoconductance along the same line.
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3. Crystal growth, patterning, doping and gating

Fig. 3 illustrates some of the results of our extensive efforts to tune the growth of VO,, using different
substrates, catalysts and growth conditions, to dope it, and to make versatile electrical contacts. For
example, we succeeded in growing high quality epitaxial VO, films, by physical vapor transport using a
V,0s source, on rutile TiO, which showed an MIT [unpublished]. Fig. 3a shows the MIT occurring in such
a film on (100) TiO,.

We succeeded in doping VO, nanobeams and platelets to the metallic state at room temperature by
either tungsten incorporation in the source (Fig. 3b) or exposure to hydrogen gas above 200 °C (Fig. 3c).
The latter was investigated in detail by Jiang Wei, who was the first graduate student on this project and
who performed the detailed follow-up experiments® after graduating while working as a postdoc with
Doug Natelson at Rice University.

An absolutely key question in the field of VO, devices is whether the MIT can be controlled by an electric
field. Essentially no effect of an insulated solid-state gate has ever been reported, and we have not
detected any. Moreover, tests of gating® using an ionic liquid by Wei in Natelson’s group exhibited no
electrical gating effects and only showed metallization resulting from injection of protons from the
liquid. In our opinion, the accumulated evidence points to the facts that (a) the screening length is very
short in insulating VO, — no more than 5 nm — and (b) the MIT cannot be induced without a structural
change which costs too much elastic energy to occur only at the surface. Nevertheless the complete
inability to significantly gate the surface carrier density reported in Ref. 5 and others remains puzzling.

We also made excellent contacts to VO, nanobeams using indium, graphite flakes (Fig. 3d), and single-
layer graphene [unpublished]. The nanobeams are manipulated into place in the graphene using a piezo-
controlled nanomanipulator. Graphene has the advantages of being very smooth and inert, thus
minimizing the effects of strain and substrate chemistry.
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Figure 3. (a) MIT seen optically in an epitaxial film of VO, grown on crystalline rutile (c-axis) TiO,. (b) A
suspended W-doped nanobeam, with a single I-M boundary, at room temperature. (c) As-grown H-doped VO,
nanobeams attached to SiO,, also showing I-M coexistence stripes at room temperature. (d) VO, nanobeam
connected with an indium contact at one end and a graphite contact at the other, and (e) temperature
dependence of its resistance (up sweep only).
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